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LETTER TO THE EDITOR 

On the time-asymptotic particle interpretation in the 
Friedman-de Sitter space 

G Schafer 
Fachbereich Physik der Universitat Konstanz, Postfach 7733, D-7750 Konstanz, 
W Germany 

Received 19 May 1978, in final form 20 June 1978 

Abstract. It is shown that in that closed Friedman universe which is the de Sitter space the 
time-asymptotic quasi-classical particle concept, as understood in this paper, is not 
possible for the conformally coupled Klein-Gordon field. It is argued that for the well 
known infinite rate of particle creation per unit volume the particles do not belong to 
physical modes. 

1. Introduction 

Up to now it has not been explicitly excluded but has even sometimes been stated that 
in the de Sitter space a time-asymptotic quasiclassical particle concept is possible 
notwithstanding the fact that the particle creation rate per unit volume calculated with 
the supposed particle concept is infinite, which implies that physically either the 
particle concept or the de Sitter space is inadequate. In this paper it will be shown 
that indeed the particle concept applied is unphysical and furthermore that a time- 
asymptotic physical particle concept isn’t possible at all. On the other hand, for 
the construction of a meaningful Fock representation on the de Sitter space, a 
curvature-asymptotic (vanishing curvature scalar) covariant ‘particle’ concept (for 
the conformally coupled Klein-Gordon field and large quantum numbers these modes 
become quasi-classical?) which doesn’t give rise to a creation rate, has proved to be 
useful. A physical particle interpretation of all of these modes however does not seem 
feasible. 

For the statements above consider the papers of Gutzwiller (1956), Rumpf (1976a, 
b) and Dowker and Critchley (1976) where the time-asymptotic quasiclassical particle 
concept in the de Sitter space is either used or at least mentioned. Compare also the 
papers of Fulling et a1 (1974), Parker and Fulling (1974) and Parker (1975) with the 
adiabatic particle concept (generalised WKB concept), the papers of Woodhouse 
(1976, 1977) and Audretsch and Schafer (1978) with other sorts of WKB particle 
concepts, and the papers of Grib et a1 (1976), Mamayev et a1 (1976) and Schafer and 
Dehnen (1977) with the particle concept based on Hamiltonian diagonalisation, which 
all get time-asymptotic particle modes in the de Sitter space. Also the papers of 
Nachtmann (1967), Chernikov and Tagirov (1968), Tagirov (1973), Candelas and 
Raine (1975) and Dowker and Critchley (1976) with the curvature-asymptotic ‘par- 
ticle’ concept do not explicitly exclude time-asymptotic particle modes. Only the 

t ‘Quasi-classical’ means ‘quasiclassical’ in the sense of this paper or the papers of Chernikov and Tagirov. 
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paper of Dowker and Critchley (1976) includes a hint that ‘time-asymptotic particles’ 
are a contradictory concept. 

For the concept of observer-dependent particles in the de Sitter space and its 
physical implications the papers of Gibbons and Hawking (1977) and Hajicek (1977) 
are illuminating. 

Notation : c = A = 1, Metric signature (+ ---), g = det(g,,), Z = space-like hypersur- 
face (Einstein universe), dZ, =oriented coordinate volume element on Z, 8, = a/ax”, 
indices are omitted sometimes. 

2. De Sitter space 

The de Sitter space may be given by the following; the ‘entire’ space covering 
coordinate system (7, x, 8,b) with Robertson-Walker metric 

a 2  2 ds2 =-(dT2 - d a  ) 
cos 77 

where 

d u 2 =  dx2+sin2 X(de2+sin2 8 db2), o<x, 8 < T ,  O S 4 < 2 T ,  

is a line element for the unit Einstein universe, a = constant, and -7r/2 < 77 < ~ / 2 .  The 
curvature scalar R has the constant value 12/a2. 

3. Klein-Gordon field 

As the field equation for the complex-valued massive scalar field @ we take the 
conformally coupled one 

(2) 
1 

@+ R/6+  m2)@ = 0, U=- a,(J-ggeuau>. 
J-g 

The hypersurface-independent scalar product according to which the @-functions 
have to be normalised may be written 

With the help of the decomposition @ = 2 exp (i W), 2 and W real, we get from 
equation (2) ,  after separating the real and the imaginary parts, the equations 

- ( Jzgz2g~ua ,w)  = 0 

and from equation (3) or ( 2 b )  the equation 

(a, @) = -L h ~ g Z 2 g r u ~ ,  W dZ,. 
m 
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With regard to the equations (5a, b)  we are forced to choose this form of the equations 
(2a, b)  respectively, i.e. equation (5a)  holds after dividing through by ZeiW and 
equation (5b) after dividing through by eiw and multiplying by 2. 

In the metric (1) equation (2) or the equations (2a, b)  are separable and we can 
write, if we take into consideration the time-independence of equation (3a), 

with WO real and Wb =dWo/dq. The A,-functions set up a complete system of 
functions on the space-like hypersurfaces 7) =constant, n is a discrete separation 
constant and WO depends on 77 only. 

To discuss the possibility of interpreting the Cp’s of equation (4) as quasi-classical 
particle solutions we quote both the classical equations for a swarm of freely moving 
point particles: 

gwu(aws)(a,S)- m 2  = o Hamilton-Jacobi equation (5a) 

(5b) 
1 

+r(J--gpgFua,S) = o equation of continuity. 
4 -g 

S (real) is the action and p (real, >O) the density distribution of the particles. 
From equation (5b)  it follows that the expression 

is constant in time. Because equations (5a)  and (5b)  are also separable in the metric 
(1) we can write, using the time-independence of expression (6), 

s = so(~)+slk, e,4) (7a)  
with po = (7)’i. cos 7) 

P = P o ( ? ? I P n k ,  4 4 )  

In building up the WKB expression 4 eis it follows, with the help of equations (7a, b), 
that 

with N, =&eiS1 and K a real separation constant. From equations ( 5 a , b )  we get an 
equation for So, 

cos2 77 -$s;: - K ’ ]  - m 2  = 0, 

and an equation for WO from equations (2a, b), 

n = l , 2 , 3 , .  . . .  

(9) 

Our condition that the @-functions of equation (4) describe time-asymptotic freely 
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moving quasi-classical particles will, in comparing equation (10) with equation (9), be 

IT 
for 1q1+-. 

a 2 Wb’ 4 Wb4 2 

(In the limit 1771 + 7r/2 the difference between K and n is empty.) Incorporating into 
expression (4) the asymptotic behaviour (11) and using equation (10) again we write 

r(7) with T = 1‘ w dq 
1 1 - - - 

Jiq -a 
and 

1/2 

+ n’) m2a2 

and get for r, applying equation (2), the ‘first’ (besides an irrelevant factor for 
171 + ~ / 2 )  Chakraborty equation (Chakraborty 1973, equation (3.3)) 

[;i;r+(i+E2)r =o, 2 1 W ) ’  1 cos’q d 2 r  
a 

Now the condition (1 1) essentially reads 

€ 2 + 0  for 1q I + ~ / 2 .  (13) 

e2+ -1/4a2m2 for l q l + ~ / 2 .  (14) 

But in calculating e2 for finite n we get 

This however means that asymptotically the effective mass of the Klein-Gordon field 
‘at rest’ becomes smaller than m, i.e. self-interactions of the Klein-Gordon field which 
are caused by the gravitational field remain. Therefore time-asymptotic quasi-classical 
free (physical) particles are not possible t. 

4. Discussion 

If one looks closer at the € 2  term in expression (14) it is revealed that asymptotically, 
for finite n, e2 is proportional to t i2.  Therefore in the WKB approximation of Wood- 
house (1976, 1977) €2 doesn’t count3 and so it must be concluded (n infinite doesn’t 
cause trouble) that time-asymptotic quasiclassical particle modes exist. Audretsch and 
Schafer (1978) get particles in the de Sitter space because the vanishing of po(q)  from 
equation (7b) for 1q I + 7r/2 deletes their € 2  term. For Fulling et a1 (1974), Parker and 
Fulling (1974) and Parker (1975) because Q+ 0 (Chakraborty’s terminology) for 
1771 + 7r/2 asymptotic particle modes exist. Gutzwiller (1956), Rumpf (1976a, b) and 
(with reservations) Dowker and Critchley (1976) who ask (time-asymptotically) for 
time exponentials receive particles too because  constant for 171 -* rr/2 (cf. (14)). 
And Grib et a1 (1976), Mamayev et a1 (1976) and Schafer and Dehnen (1977) who 
define particles through diagonalisation of the Hamiltonian obviously get particle 
modes. 

t With the same argument, yet applied to quantum number-asymptotics, Chernikov and Tagirov (1968) 
have excluded the minimally coupled Klein-Gordon equation as the correct one for the massive scalar field. 
$ I f  ma >> 1. 
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Concerning the Feynman-Schwinger-DeWitt approach used by Candelas and 
Raine (1975) and Dowker and Critchley (1976) it should be stated that it works as 
well (without creation rate) for the minimally coupled Klein-Gordon field where no 
quantum number-asymptotic (correspondence principle) quasi-classical particle 
modes exist so that in the Feynman-Schwinger-DeWitt approach further physical 
arguments must be imposed as, in another context, Candelas and Raine (1977) have 
pointed out explicitly. Our ‘strongest’ particle concept above supplies such an 
argument. This concept excludes, for example, at the beginning of the expansion 
(special expansion law), the interpretation of the boundary conditions imposed in the 
Feynman-Schwinger-DeWitt formalism by Chitre and Hartle (1 977) in terms of 
particles and seems to explain their ultra-relativistic result in contrast to Audretsch’s 
and Schafer’s (1978) nonrelativistic one (for the expansion law discussed by 
Audretsch and Schafer (1978) their particle concept coincides with that advocated in 
this paper). Also the particle concept used by Gibbons (1975) when investigating 
particle creation in plane-wave space times is the same as that in this paper. His results 
concerning these particles are meaningful. 
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